Dazu gehören die vielen Begleiter, ebenso wie die Ringe der großen Planeten, allen voran die berühmten des Saturn.


>

Größenvergleich ausgewählter Monde unseres Sonnensystems mit der Erde

© Wikipedia: Edward Yanquen, 2007



Ein Mond oder Satellit ist in der Astronomie ein kompaktes, natürlich entstandenes astronomisches Objekt, das sich in einer Umlaufbahn um ein anderes, deutlich massereicheres Objekt befindet. Bislang sind nur Monde des Sonnensystems bekannt, wobei die Forschung davon ausgeht, dass es auch Extrasolare Monde gibt. Nachgewiesen wurden Monde bislang vor allem bei Planeten, Zwergplaneten und Asteroiden, doch gibt es sie auch bei anderen Objekten. Insgesamt sind im Sonnensystem derzeit ungefähr 570 natürliche Satelliten bekannt.

Abgeleitet vom Mond der Erde, ist die Bezeichnung dieser Objekte als Monde umgangssprachlich am verbreitetsten, wohingegen sich die fachsprachliche Terminologie der Bezeichnung als Satelliten bedient. Der Planet, den ein Mond umkreist, wird auch Mutterplanet genannt. Früher wurden die Monde von Planeten auch als Nebenplaneten bezeichnet.

Die Gravitation eines Planeten wirkt sich auf einen ihn umkreisenden Mond durch Gezeitenkräfte aus. Der Mond wird dabei leicht verformt. Dies führt dazu, dass sich die Rotation des Monds allmählich seiner Umlauffrequenz um den Planeten anpasst und er schließlich eine gebundene Rotation besitzt. Der Mond wendet dann dem Planeten immer dieselbe Seite zu. Umgekehrt bewirkt die Gravitation eines Monds Gezeitenkräfte auf dem Planeten und hat damit Rückwirkungen auf dessen Rotation. Da sich Mond und Planet deutlich in der Masse unterscheiden, reichen diese Gezeitenkräfte im Allgemeinen nicht aus, um die Rotation des Planeten an die Umlaufzeit des Monds anzugleichen.

Die Gravitation von Monden nimmt deutlichen Einfluss auf die Form und Stabilität des Ringsystems eines Planeten.

Über die Entstehung von natürlichen Satelliten gibt es je nach Besonderheiten ihrer Größe oder Bahneigenschaften unterschiedliche Vorstellungen. Am bekanntesten sind die vor allem in der Vergangenheit kontrovers diskutierten Ansätze zur Entstehung des Erde-Mond-Systems – hauptsächlich entweder aus einer gemeinsamen Akkretionsscheibe, durch Einfang, durch Abspaltung oder als Folge einer Großkollision von Protoplaneten (Urerde und Theia).

Für die regulären Satelliten der großen Gasplaneten gilt die Akkretion aus umgebenden Partikeln. Für verhältnismäßig besonders große Satelliten wie den Erdmond und den Plutomond Charon hat die Vorstellung einer Großkollision die Oberhand gewonnen. Für rückläufig kreisende Satelliten, das heißt, gegen den Rotationssinn des Hauptkörpers, wird als Herkunftsweg der Einfang eines auf einer ehemals selbstständigen Umlaufbahn fertig ausgebildeten Körpers angenommen. Für die kleinen Marsmonde wird aufgrund ihrer sehr unregelmäßigen Form und der Nähe des Asteroidengürtels eine Herkunft als eingefangene Asteroiden vermutet.

Monde von Planeten des Sonnensystems sind insgesamt bisher 219 bekannt. Zwei von ihnen sind größer, aber nicht massereicher als der Planet Merkur. Von den acht Planeten haben sechs einen oder mehrere Monde, wobei die inneren, erdähnlichen Planeten ein bis zwei und die äußeren, jupiterähnlichen Planeten durchweg viele besitzen.
  • Merkur (0): kein Mond.
  • Venus (0): kein Mond.
  • Erde (1): Mond (im Verhältnis zu seinem Planeten der größte bekannte Satellit).
  • Mars (2): Phobos (mit dem geringsten Abstand von seinem Planeten) und Deimos, beides wahrscheinlich eingefangene Asteroiden.
  • Jupiter (92): u. a. die vier „Galileischen Monde“ – Ganymed (größter und massereichster Mond im Sonnensystem und einziger mit einem ausgeprägten Magnetfeld), Kallisto, Io (Mond mit der höchsten Dichte und vulkanisch aktivster Körper) und Europa. Die kleine Metis hat die höchste bekannte mittlere Bahngeschwindigkeit.
  • Saturn (83): u. a. Titan (zweitgrößter und einziger Mond des Sonnensystems mit einer dichten Atmosphäre), Rhea, Iapetus (Körper mit den kontrastreichsten Albedounterschieden), Dione (mit zwei Trojaner-Monden), Tethys (ebenfalls mit zwei trojanischen Begleitern), Enceladus, Mimas, Hyperion (einziger bekannte Mond mit chaotischer Rotation) und Phoebe (einziger größerer Mond mit regelmäßiger, aber nicht gebundener Rotation). Die zwei kleinen koorbitalen Satelliten Janus und Epimetheus tauschen regelmäßig ihre Umlaufbahn.
  • Uranus (27): u. a. Titania, Oberon, Ariel, Umbriel und Miranda (zerklüftetster Mond).
  • Neptun (14): u. a. Triton (größter rückläufiger Mond), Proteus (größter Mond mit unregelmäßiger Form) und Nereid (exzentrischste Umlaufbahn). Die kleine Naiad hat die kürzeste bekannte Umlaufzeit und die kleine Neso die größte Umlaufbahn mit der längsten Umlaufzeit und der geringsten mittleren Bahngeschwindigkeit.
Monde von extrasolaren Planeten sind bisher noch nicht beobachtet worden. Ihre Existenz liegt aber theoretisch nahe.

Monde von Zwergplaneten sind auch bekannt, insgesamt bisher neun.
  • Pluto (5): Charon (größter Zwergplanetenmond), Nix, Hydra, Kerberos und Styx.
  • Haumea (2): Namaka und Hiʻiaka.
  • Makemake (1): MK 2 (Spitzname).
  • Eris (1): Dysnomia.
Als Monde von Asteroiden gelten insgesamt 366 derartige Begleiter.

Bislang sind 345 Asteroiden mit jeweils einem oder mehreren Satelliten bekannt. Als größter Asteroidenmond gilt gegenwärtig Vanth des TNO Orcus mit 443 km. Weitere große Asteroidenmonde sind Ilmarë, Xiangliu, Actaea, Hiisi und Nunam. Die Sonde Galileo fotografierte 1993 zufällig erstmals einen Asteroidenmond, den Satelliten Dactyl des Asteroiden Ida. Große Bekanntheit erlangte Dimorphos, welcher Didymos umkreist: im Rahmen der Mission Double Asteroid Redirection Test wurde er 2022 das erste astronomische Objekt, dessen Umlaufbahn von Menschen verändert wurde.

Monde von Kometen: Die im Jahr 2006 bekanntgegebene Entdeckung des Satelliten Echidna des Asteroiden Typhon hat die Frage nach möglichen Satelliten von Kometen aufgeworfen, denn Typhon gehört der Asteroidenklasse der Zentauren an, mit stark elliptischen Umlaufbahnen im äußeren Planetensystem, und die gelten als wahrscheinlich „erloschene“ und manche auch als noch etwas aktive Kometenkerne. Die Unterscheidung zwischen Kometen und eisreichen, aber sonnenfernen und daher insofern inaktiven Asteroiden ist auch substanziell nicht eindeutig. 2017 wurde mit dem Begleiter von 2006 VW139 der erste Mond entdeckt, dessen Mutterkörper sowohl als Asteroid wie auch als Komet eingestuft wird. Ein „reiner Kometenmond“ wurde bisher noch nicht gefunden.

Monde von Monden: Monde, die um einen Satelliten eines Planeten kreisen, sind bisher nicht bekannt. Theoretisch sind diese Mondmonde innerhalb der sogenannten Hill-Sphäre des Satelliten möglich, wobei aber die Störung durch Gezeitenkräfte die Dauer dieser Konstellation stark einschränkt. Über einen längeren Zeitraum stabil können darum nur Monde von Monden mit einer großen Umlaufbahn zum Planeten und entsprechend großen Massenverhältnissen sein. Möglich (aber aktuell nicht beobachtet) wäre dies im Sonnensystem bei den Monden Callisto, Titan, Iapetus und dem Erdmond. Auch bei Exoplaneten wird eine solche Konstellation für möglich gehalten, etwa bei Kepler-1625b. [1]
Ein Quasisatellit ist ein kleiner koorbitaler Begleiter eines größeren Himmelskörpers (etwa eines Planeten), den er in größerem Abstand mit derselben Umlaufdauer umkreist, mit der sich dieser um ein Zentralgestirn (die Sonne) bewegt.

Zumeist handelt es sich dabei um Asteroiden, die sich in der Nähe eines Planeten aufhalten. Ihre Bahn um die Sonne hat demnach dieselbe Umlaufzeit und fast dieselbe Bahnachse wie der Planet, wirkt aber „von der Sonne gesehen“ etwas exzentrisch.

Quasisatelliten stehen hauptsächlich unter dem Gravitationseinfluss des gemeinsamen Zentralkörpers – und nicht wie ein Mond unter dem Einfluss des Planeten. Da das Verhältnis der Umlaufzeiten von Planet und Quasisatellit genau 1:1 beträgt, sie sich also immer in ähnlicher Konstellation begegnen, wirkt die Störung durch den Planeten immer in gleicher Weise und kann sich somit aufschaukeln und den Quasisatelliten aus der Bahn werfen.

Simulationen zufolge können Quasisatelliten um die Planeten Uranus und Neptun seit der Entstehung des Sonnensystems vor etwa 4,5 Milliarden Jahren existieren. Daher wird vermutet, dass diese Planeten Quasisatelliten besitzen, die sie seit deren Annäherung nicht wieder verloren haben. Bislang wurden allerdings keine Quasisatelliten von Gasplaneten entdeckt.

Für die Erde sind bisher mindestens vier Quasisatelliten entdeckt worden. Als erster gilt dabei der kleine Asteroid 2003 YN107 in den Jahren von 1996 bis 2006, der seitdem wieder eine Hufeisenumlaufbahn entlang der Erdbahn beschreibt. Im Jahr 2066 wird er erneut ein Quasisatellit der Erde. Bei der darauf folgenden Begegnung im Jahr 2120 ist es sogar wahrscheinlich, dass er von der Erde eingefangen und so zum „zweiten echten Mond“ der Erde wird.

Auch die Venus besitzt einen Quasisatelliten, den Asteroiden 2002 VE68. Dieser ist der erste entdeckte dieser Art und bislang der einzige bekannte koorbitale Begleiter der Venus. Berechnungen zufolge befindet er sich bereits seit 7.000 Jahren auf seiner derzeitigen Umlaufbahn und wird ihr noch für weitere 500 Jahre folgen. Vermutlich war der Asteroid vor etwa 7.000 Jahren ein erdnaher Asteroid, der von der Erde selbst auf seine derzeitige Bahn gebracht wurde. [2]
Ein Planetenring ist eine Ansammlung fester Partikel unterschiedlicher Größe (typischerweise von Staubkorngröße bis zu Durchmessern über zehn Meter), die einen planetenartigen Himmelskörper oder Asteroiden innerhalb eines abgrenzbaren Entfernungsintervalls nahe einer Ebene umkreisen und dabei zahlreich genug sind, um in ihrer Gesamtheit als ringscheibenförmiges Gebilde beschreibbar zu sein. Solche Ringe können unterschiedliche Ausmaße, Zusammensetzungen (beispielsweise aus Eis- oder Gesteinspartikeln), Flächen- und Gesamthelligkeiten aufweisen. Mehrere Ringe um einen Planeten bilden ein konzentrisches Ringsystem.

Die Entstehung eines Planetenrings ist bis heute nicht vollständig erklärt. Ein Ansatz ist, dass Ringe entstehen können, wenn ein kleiner Mond dem Planeten zu nahe kommt, sich also innerhalb der Roche-Grenze befindet, und dort durch die Gezeitenkräfte des Planeten auseinandergerissen und um den Planeten verteilt wird. Ein weiterer Ansatz im Zusammenhang mit der Roche-Grenze geht davon aus, dass die Ringe Überreste der Gasscheibe sind, aus denen sich der Planet geformt hat – innerhalb der Roche-Grenze konnte sich das restliche Gas aber zu keinen Monden formen.

Eine andere Theorie besagt, dass ein Planetenring entsteht, wenn der Planet von einem anderen Himmelskörper getroffen wird oder zwei kleine Körper kollidieren, so dass sie auseinanderbrechen und sich aufgrund der hohen Schwerkraft des Planeten nicht wieder zusammensetzen, sondern um den Planeten verteilt werden.

Im Sonnensystem hat jeder der vier Gasplaneten ein Ringsystem. Deren Teilchen umlaufen den Planeten rechtläufig innerhalb bzw. sehr nahe dessen Äquatorebene, und fast immer innerhalb der Roche-Grenze. Trotz der gemeinsamen Hauptmerkmale ist die Struktur der Ringe in allen vier Fällen sehr unterschiedlich.

Das bekannteste Planetenringsystem sind die Ringe des Saturn. Es ist das umfangreichste Ringsystem, besteht aus hellem Material und ist daher bereits mit einem guten Amateurteleskop sichtbar. Es besteht aus mehreren sogenannten Hauptringen, die wiederum aus vielen kleinen Ringen bestehen.

Nach Saturn am zweitstärksten sind im Sonnensystem die Ringe des Uranus ausgeprägt. Am schwächsten ist das Ringsystem des Jupiters. Es besteht aus äußerst dunklem Material, noch dazu ist es verschwindend unscheinbar, sodass es nur durch Raumsonden nachgewiesen werden konnte. Man nimmt an, dass Jupiters Ringe von winzigen innersten Monden mit neuem Material versorgt werden, während das alte Material stetig auf Jupiter herabrieselt. Uranus und Neptun haben ebenfalls äußerst dunkle Ringe. Bei Neptun glaubte man anfangs, dass seine Ringe nur unvollständige Ringbögen seien, also nicht in sich geschlossen wären.

2014 wurden von der Europäischen Südsternwarte (ESO) erstmals Ringe um einen Asteroiden entdeckt.

2017 wurde entdeckt, dass der Zwergplanet Haumea über einen 70 km breiten Ring von etwa 4.570 km Durchmesser verfügt.

Da sämtliche Gasriesen des Sonnensystems Ringsysteme besitzen, kann die Existenz von Exoplaneten mit Ringen angenommen werden. Während Eispartikel (wie sie den Hauptbestandteil der Saturnringe bilden) nur bei Planeten außerhalb der „Eislinie“ langfristig in Ringen vorhanden sein können, können innerhalb der Eislinie Planetenringe aus Gesteinsteilen langfristig stabil sein. Nachgewiesen werden könnten solche Ringsysteme beispielsweise bei mit der Transitmethode beobachteten Planeten, wenn sie optisch dicht genug sind, um zusätzlichen Lichtabfall beim Zentralstern zu verursachen. Bis 2015 sind solche Beobachtungen nicht bekannt.

2015 gab es Pressemeldungen über die erfolgte Entdeckung eines „Super-Saturn“ J1407b (Exoplanet oder Brauner Zwerg). Das Ringsystem hat einen Radius von ca. 90 Millionen km (also etwa dem 200-fachen der Saturnringe). Das mit etwa 16 Millionen Jahren geringe Alter des Sternsystems deutet allerdings darauf hin, dass es sich eher um eine Struktur analog zu einer protoplanetaren Scheibe (bzw. tatsächlich um eine solche) handelt, als um ein langfristig stabiles Ringsystem in einem ausentwickelten Planetensystem. [3]
Als Ringe des Saturn (oder Saturnringe) wird das Ringsystem bezeichnet, das den Planeten Saturn umgibt. Es ist das auffälligste und charakteristische Merkmal des Planeten und durch ein Fernrohr ab etwa 40-facher Vergrößerung sichtbar. Die Ringe bestehen aus einer ungeheuren Anzahl einzelner kleiner Materialbrocken, die den Saturn umkreisen. Die Größe dieser Partikel, die im Wesentlichen aus Eis und Gestein bestehen, reicht von Staubteilchen bis zu einigen Metern. Aus der Ferne betrachtet erscheinen sie als geschlossener ringscheibenförmiger Körper.

Das Ringsystem wird von größeren und kleineren Lücken in konzentrische Einzelringe unterteilt. Die zwei hellsten Ringe (A- und B-Ring) wurden bereits mit den ersten Teleskopen im Jahr 1610 entdeckt, der innen anschließende, fast durchsichtige C-Ring erst 1850. Die vier weiteren, sehr feinen und lichtschwachen Gebilde wurden erst durch drei Raumsonden zwischen 1979 und 1981 nachgewiesen.

Die Ringe sind mit einer Dicke zwischen 10 und 100 Metern bei einem Durchmesser von fast einer Million Kilometern extrem dünn. Sie liegen genau in der Äquatorebene des Saturn und werfen einen sichtbaren Schatten auf ihn – wie auch umgekehrt der Saturn auf seine Ringe. Der Schattenwurf auf die Saturnoberfläche ist umso ausgeprägter, je mehr das dünne Ringsystem im Laufe eines Saturnjahres mit seiner schmalen „Kante“ gegenüber der Sonne geneigt ist.

Zur Entstehung der Saturnringe gibt es verschiedene Theorien. Nach einer bereits im 19. Jahrhundert vorgeschlagenen Theorie entstanden die Ringe durch einen Mond, der sich dem Saturn so weit genähert hat, dass er durch Gezeitenkräfte auseinandergebrochen ist. Der kritische Abstand wird als Roche-Grenze bezeichnet. Die räumliche Variation der Anziehungskräfte durch den Saturn übersteigt in diesem Fall die mondinternen Gravitationskräfte, so dass der Mond nur noch durch seine materielle Struktur zusammengehalten wird. Nach einer Abwandlung dieser Theorie zerbrach der Mond durch eine Kollision mit einem Kometen oder Asteroiden.

Nach einer anderen Theorie sind die Ringe gemeinsam mit dem Saturn selbst aus derselben Materiewolke entstanden. Diese Theorie wurde bis kürzlich kaum mehr vertreten, denn man vermutete, dass die Ringe ein nach astronomischen Maßstäben eher kurzlebiges Phänomen von höchstens einigen hundert Millionen Jahren darstellen. [4]
Der Planet Uranus ist von einem System von Planetenringen umgeben, das in seiner Variation und Vielschichtigkeit zwar nicht an die deutlich großflächigeren Bahnen der Saturnringe heranreicht, aber dennoch vor den einfacheren Strukturen der Jupiter- und der Neptunringe eingeordnet werden kann. Die ersten Ringe des Uranus wurden 1977 entdeckt. Obwohl bereits 200 Jahre zuvor der Astronom Wilhelm Herschel über die Beobachtung von Ringen berichtet hatte, wird von heutigen Astronomen bezweifelt, dass es angesichts ihrer dunklen und blassen Erscheinung mit den Mitteln der damaligen Zeit möglich war, das Ringsystem tatsächlich wahrzunehmen. Zwei weitere Ringe wurden im Jahre 1986 auf Bildern entdeckt, die die Raumsonde Voyager 2 vom Planeten aufnahm, und ein zusätzliches Ringpaar fand man zwischen 2003 und 2005 auf Fotos des Hubble-Weltraumteleskopes.

Seither sind 13 eigenständige Ringe des Ringsystems des Uranus bekannt. Ihre Radien betragen 38.000 km bis 98.000 km. Zwischen den Hauptringen konnten zusätzliche matte Staubbänder und unvollständige Bögen beobachtet werden. Die Ringe sind extrem dunkel. Sie setzen sich wahrscheinlich aus gefrorenem Wasser zusammen, das sich mit einigen dunklen, strahlungsabsorbierenden organischen Komponenten verbunden hat.

Die meisten der Uranusringe sind undurchsichtig und nur wenige Kilometer breit. Das Ringsystem besteht aus kleinen Objekten, die mehrheitlich einen Durchmesser zwischen 0,2 und 20 m haben. Das relative Fehlen von Staub innerhalb des Ringsystems erklärt sich aus dem Luftwiderstand, den die ausgedehnte Exosphäre des Uranus durch seine Korona mit sich bringt.

Man vermutet, dass die Ringe des Uranus nicht älter als 600 Millionen Jahre und damit relativ jung sind. Das Ringsystem besteht vermutlich aus Überresten einer Vielzahl von Monden, welche ursprünglich einmal den Planeten umkreist hatten, ehe sie vor langer Zeit untereinander kollidierten. Nach Zusammenstößen brachen die Monde in zahllose Teile auseinander, die anschließend als die heute sichtbaren schmalen und optisch dichten Ringe überdauerten und nun den Planeten in strikt definierten Bahnen umgeben. [5]
  [1]  Wikipedia (de): Mond des Sonnensystems
  [2]  Wikipedia (de): Quasisatellit
  [3]  Wikipedia (de): Planetenring
  [4]  Wikipedia (de): Ringe des Saturn
  [5]  Wikipedia (de): Ringe des Uranus
Wikipedia (en): Natural satellite
Wikipedia (en): Quasi-satellite
Wikipedia (en): Ring system
Wikipedia (en): Rings of Saturn
Wikipedia (en): Rings of Uranus

Daten
Erfasst werden alle Monde und Ringe unseres Planetensystems.
Anzahl: Monde etwa 570 Datensätze, Ringe etwa 10 Datensätze.
(1)  ...
(2)  ...

Quellen und Material
[xxx]  ...
[xxx]  ...

Wikipedia (de) – Listen
...
...

Wikipedia (en) – Listen
...
...



Ebene hoch
Übersicht